Global rigidity for totally nonsymplectic Anosov Zk actions

نویسندگان

  • BORIS KALININ
  • VICTORIA SADOVSKAYA
  • Boris Kalinin
  • Victoria Sadovskaya
چکیده

We consider a totally nonsymplectic (TNS) Anosov action of Zk which is either uniformly quasiconformal or pinched on each coarse Lyapunov distribution. We show that such an action on a torus is C∞–conjugate to an action by affine automorphisms. We also obtain similar global rigidity results for actions on an arbitrary compact manifold assuming that the coarse Lyapunov foliations are topologically jointly integrable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local rigidity of certain partially hyperbolic actions of product type

We prove certain rigidity properties of higher-rank abelian product actions of the type α × Id N : Z κ → Diff(M × N), where α is (TNS) (i.e. is hyperbolic and has some special structure of its stable distributions). Together with a result about product actions of property (T) groups, this implies the local rigidity of higher-rank lattice actions of the form α × Id T : → Diff(M × T), provided α ...

متن کامل

The Katok-spatzier Conjecture and Generalized Symmetries

Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.

متن کامل

Spatzier’s Conjecture and Generalized Symmetries

Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.

متن کامل

Global Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds

An Anosov diffeomorphism f on a torus T is affine if f lifts to an affine map on R. By a classical result of Franks and Manning, any Anosov diffeomorphism g on T is topologically conjugate to an affine Anosov diffeomorphism. More precisely, there is a homeomorphism φ : T → T such that f = φ◦g◦φ−1 is an affine Anosov diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is...

متن کامل

Weakly Hyperbolic Actions of Kazhdan Groups on Tori

We study the ergodic and rigidity properties of weakly hyperbolic actions. First, we establish ergodicity for C2 volume preserving weakly hyperbolic group actions on closed manifolds. For the integral action generated by a single Anosov diffeomorphism this theorem is classical and originally due to Anosov. Motivated by the Franks/Manning classification of Anosov diffeomorphisms on tori, we rest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009