Global rigidity for totally nonsymplectic Anosov Zk actions
نویسندگان
چکیده
We consider a totally nonsymplectic (TNS) Anosov action of Zk which is either uniformly quasiconformal or pinched on each coarse Lyapunov distribution. We show that such an action on a torus is C∞–conjugate to an action by affine automorphisms. We also obtain similar global rigidity results for actions on an arbitrary compact manifold assuming that the coarse Lyapunov foliations are topologically jointly integrable.
منابع مشابه
Local rigidity of certain partially hyperbolic actions of product type
We prove certain rigidity properties of higher-rank abelian product actions of the type α × Id N : Z κ → Diff(M × N), where α is (TNS) (i.e. is hyperbolic and has some special structure of its stable distributions). Together with a result about product actions of property (T) groups, this implies the local rigidity of higher-rank lattice actions of the form α × Id T : → Diff(M × T), provided α ...
متن کاملThe Katok-spatzier Conjecture and Generalized Symmetries
Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.
متن کاملSpatzier’s Conjecture and Generalized Symmetries
Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.
متن کاملGlobal Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds
An Anosov diffeomorphism f on a torus T is affine if f lifts to an affine map on R. By a classical result of Franks and Manning, any Anosov diffeomorphism g on T is topologically conjugate to an affine Anosov diffeomorphism. More precisely, there is a homeomorphism φ : T → T such that f = φ◦g◦φ−1 is an affine Anosov diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is...
متن کاملWeakly Hyperbolic Actions of Kazhdan Groups on Tori
We study the ergodic and rigidity properties of weakly hyperbolic actions. First, we establish ergodicity for C2 volume preserving weakly hyperbolic group actions on closed manifolds. For the integral action generated by a single Anosov diffeomorphism this theorem is classical and originally due to Anosov. Motivated by the Franks/Manning classification of Anosov diffeomorphisms on tori, we rest...
متن کامل